
/AD-A193 796 HIGNER ORDER LANGUAGES FOR ROIOTSMU MANUFACTURING 1/2
Fl TECHNOLOGY INUORKATION ANALYSIS CENTER CHICAGO IL

J R SLANA ET AL. OCT 66 NTIRC-SORR-96-01
UNCLASSIFIED DL99S-4-C-1568 F/G 12/5 NI.

mhmhhhhm

10

111112 1111I2~

LL:-
MICROCOPY RESOLUTION TEST CH-AR1

%mm
m

rC..

0p

- - - - -0
V ":.-* ,-.

., rX - ,'j.,, ',V.7 , .- JN M 4,-x-% '1 ., , -,,. .. , .. , . - ',.". . , "- . . . ". " J. ". ,'%',".",,... ,.-.. ,' , -,,-.

"is-am a(% L- '

-6-i

%

I.

MTIAC-SOAR-86-01 ,

HIGHER ORDER
LANGUAGES FOR
ROBOTS NIP&

October 1986 DTIC
ELECTE

James R. Blaha PR 2 8 1988
John P. Lamoureux 0
Keith E. McKee, Ph.D.lIT Research Institute

~ A Prepared By:-I-" -LrqIr' JN Cresap, McCormick and Paget
AvPTov.d fot public raljeaso Division of TPF&C, Inc.z-t /ibtion Uinltmted (312) 567-4730

Under Contract to
Department of Defense

Contract Number DLA900-84-C-1508

A Department of Defense Information Analysis Center

_v JA
*' Iq:.7"%

Overview MTIAC Scope of
Objectives the Program

MTIAC is a Department of De- The Department of Defense es- Activities Scope
fense (DoD) Information Analysis tablished the Manufacturing MTIAC performs these activities:
Center. MTIAC serves as a central Technology Information Analysis
source for currently available and Center (MTIAC) through the De- * Maintains a bibliographic data
readily usable data and informa- fense Logistics Agency to improve base on manufacturing -

tion concerning manufacturing productivity, reduce costs, and technology

technology. The primary focus of reduce lead times in the produc- * Maintains a DoD Manufactur-
the Center is to collect, analyze, tion of defense equipment and to ing Technology Program (MTP) 7 1
and disseminate manufacturing further the use and development data base
technology for the production of of advanced technologies. By con-

defense materials and systems. solidating and retaining manu- * Prepares and publishes hand-

The funding agency for MTIAC is facturing information and experi- books, data books, reference

the Defense Technical Informa- ence in a central repository staffed works, state-of-the-art reviews -

tion Center of the Defense Logis- by manufacturing specialists, (SOARs), critical reviews and

tics Agency of the Department of knowledge can be disseminated technology assessments, con-

Defense, in Alexandria, Virginia. and applied quickly apid effec- ference proceedings, newslet-

MTIAC's data collection and dis- tively to plant modernization ters, and other publications

semination function is tied to programs. The Center benefits * Responds to technical, bib- !

DTIC by a shared bibliographic engineers and information liographic, and other user

data base. specialists, government agencies, inquiries
and defense contractors by saving

The DoD supports manufacturing valuable man-hours in locating Establishes and maintains pro-

technology programs conducted data and information and apply- grams of awareness and visibil-

by the Air Force, Navy, and Army ing the new technologies. The re- ity of MTIAC capabilities and %

as well as by the Defense Logis- suit can be reduced planning and! services to promote the
tics Agency. MTIAC's role is to or production costs. Center's use
support the effective use of man-
ufacturing technology by DoD MTIAC also serves the civil sector 0 Performs special tasks for gov-
uacind techendustril on- within the constraints of the ernment users, separately
tractor base, at both the prime priorities of defense needs and funded through the MTIAC

contract and subcontract level, limits on disseminating informa- contract. ;

This support is provided through tion, becaus of security classi- an
a range of services from technical ication, and the export laws and Further information regarding
inquiries to bibliographic searches regulations on technologyMTIAC services, products, sub-
and special tasks within the scope transfer scription plan or additional copies
of the contract. Services are this report may be obtained by
offered on a fee-for-ser'ice basis writing or calling: MTIAC, -'

to subscribers and nonsubscribers. lIT Research Institute, 10 West
35th St., Chicago, IL N)616
(312) 567-4730 '

I

J.'.

Unclassified
E C1 Y C.ASSFCAON ri AUTIY3DSRBTO/AALBLT FRP

jE RYN ORGWIANTON AUEHORITY 3URS 57~TRIUIN /ANIALT OF REPORTNUERS

S SOAR-86-01

,NAME OF PER;ORMING ORGANIZATION 15b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
* (resap, McCormick and Paget (if applicable) Dr. Lloyd Lehn

Division of TPF&C Inc. Acquisitions & Logistics PSIR
5c aDGRESS City, State, and ZIP Code) 7b. ADDRESS City, State, and ZIP Code)

10 West 35th Street Off. of the Asst. Secy. of Defense -
Chicago, IL 60616 Pentagon, R~oom 3C257

__________________________ ashington, DC 20302-8000
ia l,!%E DP '-INDING, SPONSORING 18b. OFFICE SYMBOL 9 PROC'JREMENT .NSTRUMENT iDENTIFICATION NUMBER
0RGc.L\ZAT'ON (if applicable)
Defense Logistics Agency L9084C18

3c. A D Aq 5S (City, Starte, and ZIP Code) 10 SOURCE OF FUNOING NUMBERS
Cameron Station PROGRAM PROJECT 7ASK WNORK UNIT
Alexandria, VA 22304-6145 ELEMENT NO. NO NO ACCESSION NO

7,.: lnrcide Securtry Classification)

Higher Order Languages for Robots

2 ERSONAL Au7*-OR(S)
K. E. McKee, J. P. Lamoureux, J. R. Blaha* 'a -,:, EDORT T1 3b 7IME COV4ERED 114 DATE OF REPORT (Year, Month. Day) uS PAGE COLNT

SOAR FROM TO October 1986 I 137
p. *, ,PLEENARY !40TA7.ON

Hardcopy available from 1 TIAC only. Reproduction not authorized except by permission.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 9

E GROUP SUIB-GROUIP Robots Manufacturing
02 Higher Order Languages

Robot Programming
C'"A Con iieo eesei eeu angf identif by block number)

. dis state o0 te art review ol higher order languages for robots provides a background of N
robot programming approaches. Strengths and weaknesses of various approaches are presented.
The second section of the report discusses specific languages. Manipulator level languages

*. developed by universities and research institutes include: AL,(PAL, JARS, LAMA-S, LM, ROBEX,
~- RPL, VML, LENNY, LPR, MAL, RCCL, RCL, SRL, and LMAC. Commnercial languages are: VAL, ML,

EMILY, SIGLA, AML, HELP, MCL, AML/E, AML/V, RAIL, PASRO, CIMPLER, VAL II, AR-BASIC, K.AREL and
~? AML/X. Task level languages discussions include RAPT and AUTOPASS. CAD/GRAPHIC systems that
\ are discussed include GRASP, IGRIP, GRIPS from Universities and PLACE, ANIMATE COMMAND, ADJUST C

BUILD and ROBOT-SIM from commercial manufacturers. A third section discusses robot perfor- 0
S mance and the elements of a robot programming system. The resulting programming requirements ,
~. are set forth. Comparisons are drawn for VAL, VAL-II, RAIL, KAREL, and AML/X. Off-line
Y programming is compared to teach programming. DoD HOL issues and ongoinq research are dis-

cussed. Conclusions emphasized the needs for the language and the requirements of the entire
1j robot system.,

7777 iS* U -N C V J''LABIUiTY OF ABSTRACT 21. ABSTRACT SECURITy CL.ASSIFICATION
0 %.'C -:,S ;F ED I' LMI MTE D M SAME AS RPT CQ OTIC USERS Uncl assi f ied
:A '.1E)F RESPOjSiBLE NOiVIDUAL 22b TE..EPH-ONE (include Area Code) 22c OPPFCE SYMBOL
Thomas B. Turner (312)567-4730

DO FORM 1473,.84 MAIR 83 APR edition may be used u'tii exI'austed SECURITY cLAs~iFCAr;cN OF -"15 PAGE
All other editions are obsolete

PREFACE

This state-of-the art review was prepared by the Manufacturing Technology

Information Analysis Center (MTIAC) under Contract DLA-900-84-C-1508 for the

Department of Defense.

Higher order languages are defined as textual languages in this study.

However, the study also highlights the trend toward the use of teach pendants

which have incorporated in them some higher order capabilities, noting that

the choice depends upon organizing perception of user friendliness. A major

portion of the review is dedicated to a discussion of currently available

robot programming languages. The efforts of universities and research

institutes are reviewed as are commercial offerings. Languages are discussed

in terms of levels (servo, manipulator, and task). CAD/Graphic systems are

also covered. is.

The discussion of languages leads to a section on language comparison.

Language comparison constitutes the principal portion of the study and sets

forth the basis for comparison, a listing of elements to be compared, and a

comparison of several robot programming languages (VAL, VAL II, RAIL, KAREL,

and AN-L/X).

Completion of the language comparisons permitted this review to summarize

some of the current issues in the field. Issues include the relationship to

teach vs off-line programming, language implementation, trade-offs necessary

as languages approach task level, and the appropriate scope of the robot

programming languages when considering manufacturing cells as opposed to

stand-alone installations.

The state-of-the-art review concludes with a discussion of special robot

programming considerations associated with defense manufacturing. Batch

manufacturing, communication between contractors and subcontractor, documenta-

tion of such information as cell status, and the impact of remanufacturing are

cited as relevant. J, .
.1A

I.--%

, ,.,Y

(" ! - '

A,,P

Recommendations suggest research in areas such as the need for a PP.%

programming methodology that recognizes the totality of robot programming

requirements, world modeling, simulation, communication, sensor technology and

safety. The conclusions emphasize the importance of supporting the entire

robot programming system, noting that if a program is to be written directly

in a language, the language needs to have both high-level constructs for ease

of programming and low-level constructs for explicit control. In the same

sense, programs written using an applications interface need a language that .

supports a flexible user interface. -

The content of this review has been derived from a review of over 50

references. However the subject of robot programming is constantly evolving

so that the literature had to be supplemented by 13 field interviews with

specialists in robot programming and languages. The interviews are listed in

an appendix. Upon completion, the document was reviewed by experts in the

field. The writers particularly wish to thank Dr. Lloyd Lehn, Office of the

Assistant Secretary of Defense, Acquisition and Logistics, for his guidance

and review. Additionally the authors appreciate comments from the following

reviewers:

Dr. Graham H. Morris
National Bureau of Standards

Dennis C. Haley
Martin Marietta

Bertil Thorvaldsson
ASEA Robotics Inc.

Dr. Margaret A. Eastwood
CIMCORP

Dr. Robert L. Haar
General Motors

Mitchell Ward
GM Fanuc Robotics

,% %

1V 'e

V?- I v- ".

1 7 W

This state-of-the-art review is one of a series of reports intended to

keep MTIAC users abreast of technology and information within the scope of

lanufacturing Technology. Information about other reports may be obtained by

contacting:

MTIAC
c/o Cresap, McCormick and Paget
Division of TPF&C Inc.
10 West 35th Street
Chicago, IL 60616

"N

The findings in this report are not to be construed as
an official Department of Defense position unless so
designated by other authorized documents.

The citation of any commercial products, trade names,
or manufacturers in this report does not constitute an
official endorsement or approval of such items or
companies by the United States Government.

iv_

0

TABLE OF CONTENTS

Section Page

1 BACKGROUND 1

1.1 Introduction 1 5%
1.2 Scope 1

1.3 Computer Programming Languages 2
1.4 Numerical Control Languages 8
1.5 Robot Programming Levels 8
1.6 Robot Programming Techniques 13

1.6.1 Teach Programming 13 N
1.6.2 Off-Line Textual Programming 15
1.6.3 Augmented Teach 18
1.6.4 CAD/Graphics Systems Programming 19

1.7 Robot Programming Process 21 .,
1.8 Summary 23

2 CURRENTLY AVAILABLE ROBOT PROGRAIMING LANGUAGES 25

2.1 Languages Identified and Classified 25
2.2 Servo Level Languages 35
2.3 Manipulator Level Languages 35

2.3.1 Universities and Research Institutes 35 A-t
2.3.2 Commercial Vendors 38

2.4 Task Level Languages 40

2.4.1 University and Research Institute 41
2.4.2 Commercial Vendor 41

2.5 CAD/Graphic Systems 41

2.5.1 University and Research Institute 41
2.5.2 Commercial Vendor 41

2.6 Current Language Use and Trends 42
2.7 Summary 44

3 COMIPARISON OF ROBOT LANGUAGES 46

3.1 Basis of Comparison 46

3.1.1 Robot Performance 46
3.1.2 Elements of the Robot Programming System 47 ,

3.2 Robot Programming Requirements 50

3.2.1 The Industrial Environment Layer 50
3.2.2 The Application Layer 53

3.2.2.1 Sensing 55
3.2.2.2 World Modeling 56
3.2.2.3 Motion 58
3.2.2.4 Decision laking 59
3.2.2.5 Communication 60

-vi-

TABLE OF CONTENTS (cont'd)

Section Page -1

3.2.3 Language Capability Layer 60
3.2.4 Programming Environment Layer 63
3.2.5 Operating Environment Layer 67
3.2.6 Language Implementation Layer 71
3.2.7 Language Feature Layer 75

3.2.7.1 Declarations and Variables 77
3.2.7.2 Data Types 78
3.2.7.3 Operators 80
3.2.7.4 Control Structures 80
3.2.7.5 Subprograms 81
3.2.7.6 Input/Output 82
3.2.7.7 Motion 83
3.2.7.8 Tool Statements 83

3.2.8 Relationship Among Layers in the Programming 84
System

3.3 Comparisons in the Literature 34

3.4 Capability Comparison of Selected Languages 95

3.4.1 VAL and VAL II 98
3.4.2 RAIL 99
3.4.3 KAREL 100
3.4.4 AML/X 102
3.4.5 Results of Comparison

104

3.5 Robot Programming Issues 104

3.5.1 Teach Programming vs Off-Line Programming 105
3.5.2 Language Approach 106
3.5.3 Extent of Task Level 107
3.5.4 Robot Control vs Cell Control 108
3.5.5 Standards 109

3.6 Summary 109 %

4. ROBOT PROGRAMMING LANGUAGES--A DoD PERSPECTIVE 111

5. RECENT AND ONGOING RESEARCH AND DEVELOPMENT 113

5.1 Servo Level 113
5.2 Manipulator Level 114 0
5.3 Application Level 115
5.4 Task Level 116
5.5 Applications of Artificial Intelligence 118

6. RECOMMENDATIONS AND CONCLUSIONS 119 0

6.1 Recommendations for Research and Development 119
6.2 Conclusions 119

-vii- '

S.'%,".

TABLE OF CONTENTS (cont'd)

Section Page

REFERENCES 123

BIBL IOGRAPHY 126

APPENDIX A 128
-% o.

d, %.

I..-".

0

:,A

% 0.

' '

~,.J. W

-vi ii-

*5 I

LIST OF FIGURES

Figure Page

1 COMPARISON OF COMPUTER AND ROBOT PROGRAMMING LEVELS
AND TECHNIQUES 5

2 ISE OF THE RS494 STANDARD 9 ,

3 THE OFF-LINE ROBOT PROGRAM DEVELOPMENT CYCLE 22

4 THE ROBOT PROGRAMMING SYSTEM 49

5 IMPACT OF THE EXTERNAL WORLD ON THE ROBOT PRCRAMMING ,
SYSTEM 51

6 ENTITIES OF THE APPLICATION LAYER 54

7 WORLD MODELING USING FRAMES 57

8 ENTITIES IN THE LANGUAGE CAPABILITIES LAYER 61

9 PROGRAMMING ENVIRONMENT ENTITIES 64

10 OPERATING ENVIRONMENT ENTITIES 68

11 IMPLEMENTATION LAYER ENTITIES 72

12 FEATURE LAYER ENTITIES 76

ix

.%

-ix- '

LIST OF TABLES "

-.

TABLE PAGE

1 HIGHER ORDER ROBOT LANGUAGES 26

2 CURRENTLY AVAILABLE COMMERCIAL LANGUAGES 34

3 SIGNIFICANT ACCEPTANCE AND USE TO DATE 43

4 IMPACT OF APPLICATION LAYER ON THE ROBOT PROGRAMMING 85
SYSTEM

5 COMPARISON OF THE LANGUAGES 86

6 COMPARISON OF ACTUAL FEATURES AVAILABLE IN THE
14 ROBOT LANGUAGES 88

7 QUANTITATIVE COMPARISON OF 14 LANGUAGES FOR A
PALLETIZING-BLOCK PROGRAMMING EXAMPLE 91

8 SUMMARY OF PROGRAMMING SYSTEM 93

9 IMPACT OF SOFTWARE OUALITY ATTRIBUTES ON LIFE CYCLE 94

10 USER REQUIREMENTS LIST FOR ROBOTICS LANGUAGES 96

11 ASSEMBLY RELATED ROBOT LANGUAGES AND PROGRAMMING FEATURES 97

.'.S

* *-.

)"* *.1°

.

- x-, ,

-" *Nw *.-*% *j *.(-* *-S . ~. . -

-X- '. 5 . - -

i ,j. ...

1. BACKGROUND

-6
1.1 INTRODUCTION N W.

The purpose of this paper is to present a state-of-the-art review of -.

higher order languages for robots. Research was conducted by a study of

published literature and by interviews with industry professionals. The

literature consisted of papers published in technical journals and presented

at conferences, industrial handbooks, and textbooks. Interviews were con-

ducted with professionals from the defense community (primarily the services

and aerospace contractors), the nondefense community (primarily automotive

industry), universities, and the robot vendors.

The subject of robot programming languages is not mature. Consequently, .,
there are conflicting opinions on various issues and different approaches have

been explored. This creates some confusion, particularly for nonprogrammers, S

when trying to evaluate the strengths and weaknesses of various languages.

The intent of this review is to illustrate the current issues in robot pro-

gramming, identify the languages, and provide a method by which languages can

be evaluated.

The review is structured into six sections. Section 1 provides a back- -.

ground of robot programming approaches, including the strengths and weaknesses

of different techniques. Section 2 identifies and describes robot languages

that are commercially available and those that have been developed by univer-

sities and research institutes. Section 3 presents a method by which robot

languages may be evalulted. In addition, some comparisons that have been

published in the literature are examined. Section 4 discusses some issues

relevant to defense manufacturing. Recent and ongoing research is discussed

in Section 5. Finally, conclusions and recommendations are presented in

Section 6.

1.2 SCOPE

The objective of this paper is to review the state of the art in higher .

order programming languages for robots. The scope is limited to languages

that apply to industrial robots in manufacturing applications. Different 0

types of robots will have different programming language requirements. A

- 1 -

manufacturing robot, for example, operates in a very structured and predict-

able environment when compared with that of a battlefield robot. Although the

specific language requirements are different, the general issues discussed in

this paper are generally applicable to all types of robots.

There is by no means an industrywide definition for "higher order lan-

guage" for robots. Definitions range from an "off-line programming language"

to "any language containing higher level constructs" to "task level language."

The definition providing the clearest distinction of what constitutes a higher ".

order language is that which distinguishes between teach pendant programming

and off-line textual languages. By definition then, all higher order lan-

guages are characterized as textual and man-readable, though the environment

in which they are generated may be off- or on-line with the robot controller.

Teach pendant programming is discussed, however, to illustrate the evolution

and benefits of higher order languages and to fill In the backdrop for the

current debates over robot programming techniques.

1.3 COPUTER PROGRMR4ING LANGUAGES

One school of thought promotes the use of general purpose computer pro-

gramming languages as the base for robot programming languages. In fact, the

evolution of robot programming languages closely parallels that of computer

languages. A review of the evolution of programming languages is therefore

helpful in providing a perspective from which to evaluate current and future

robot languages.

The earliest programming, using a machine-specific language, required
intimate and detailed knowledge of the computer hardware. Machine language

programming involved coding instructions in binary format (a series of ls and

Os), and each machine had its own format for particular instructions. Editing

was often done through a series of toggle switches on the front panel of the

computer. There were no high level instructions, so even a simple operation

like adding two numbers involved a series of instructions specifying where the

data was to be retrieved from, what was to be done, and where the result was

to be stored. A major portion of a programmer's time and energy was spent on
mentally translating his program concept, such as "addition," into the corre-

sponding binary codes that would literally activate the computer circuitry

necessary to access, manipulate, and store data.

-2-
- 2 --.- ''- C DV vP

To relieve the programmer of some of the details of machine programming, '.

a program called an "assembler" was developed. This first programming tool

allowed the creation of programs in a more symbolic fashion using mnemonics

for operation codes and names for data locations. The assembly language

program would be automatically translated by the assembler into the proper

binary machine codes for input to the target execution computer.

Assembly programming is still widely practiced today, for two major

reasons. An assembly program has a nearly one-to-one relationship between its

instructions and the translated machine language instructions. Therefore,

assembly programs yield executable programs that are as space and time effi-

cient as programs coded directly in machine code.

The other major reason is that hardware attached to computers, such as

*printers, terminals or servo drives, requires very low-level machine-specific

control signals for operation. The specific requirements of control demand

that a program be capable of manipulating memory locations very explicitly, ,.*.

just as machine code programs do. Consequently, assembly programming has a .

place wherever the most efficient and the most hardware-oriented programming

is required. Many of the motion control algorithms in robotics are written in

assembly code because speed of execution is essential.

A major evolutionary step in programming languages came in 1953, when IBM

wrote the first "compiler" for a language called FORTRAN. This first high-

level language was designed to perform "Formula Translation" for engineers;

that is, it converted a series of calculations into a program for solution by

a computer. A FORTRAN compiler, like any compiler, translates a program

written in a higher-level, problem-oriented symbolic language into a lower-

level, hardware-oriented language such as assembly. During the translation

process, other programs or data may be brought together or compiled in a

single output file called an object program.

Thousands of such high-level languages have been developed over the

years, sometimes in conjunction with the corresponding compiler/translator, as

was the case with FORTRAN, or sometimes as a stand-alone item requiring major

independent initiatives to develop a compiler, as with the Ada language. The

reason a language is different than its implementation (the compiler) is that L

the language is problem-oriented while the implementation must necessarily be

hardware-oriented. This division allows for many languages to be usable on a

3

',S%

"W'.W" ." '-,* r-' -' ", "-'.°"- "W ","" " .'--'-, ,'.''.''.), • W'W L' W',"..',
" .

'LW' W'." " .' .r . . .'r .' 'W " ".. .' ,_. " ." ,' • ". ".." ".

,w 7 ,. i , W 7lu M ,h .,, IM

variety of computers by virtue of forcing compilers to address the hardware

implementation issues, leaving the high-level programming language free to

express just the problem itself.

The left side of Figure 1 shows how the simple problem "2 + 3 = ?" is

programmed in the high-level language FORTRAN, and what the resulting assembly

code is after processing by a FORTRAN compiler for a VAX 11/785 computer. The

last stage shows what the actual machine language program looks like after

processing by an assembler. The point of detailing out these processing

stages is that a programmer may have programmed the solution to the question

"2 + 3 = ?" in either the FORTRAN, assembly, or machine languages directly.

An even higher level of programming is also illustrated, as a goal driven

query processor. In the earliest days of programming, the only computer

language available was machine, but 30 years later thousands of languages can

express the same problem in a more or less concise manner as the given FORTRAN

program.

The high-level general purpose computer languages have evolved over the

years, and robot programming languages have paralleled this evolution.

Unstructured languages such as BASIC and FORTRAN were the first to be devel-

oped. These were followed by the structured languages such as PASCAL and C.

*,any present day robot languages are based on the concept of structured lan-

guages. Currently, functional languages and object-oriented languages are

being developed. Gini and Gini (1)* suggested that future robot languages
6..

will be based on the concepts of these languages. This is due, in part, to an

anticipated change in the traditional Von Neumann computer architecture which

will occur in the near future.

High-level languages are independent of the computer hardware. A program

written in a high-level language will run on any computer with the appropriate

translator. There are two methods of translation. An interpreter translates

one instruction, executes it, then translates the next instruction, executes

it, and so on. The advantage is that the programmer can edit and then

execute a few instructions at a time, which makes debugging programs easier.

*Numbers in parentheses refer to list of references at the end of this report.

4

* I. ~ .- 4

Computer Programming Robot Programming

VIE d /t /

f
%

GOALDRIVN H gh Lvel ASK EVE

PRGA PROGRAM

POPendant -

t ro lt AN.

________E:!_IM Medium LevelP

I *M4472O0 6O05035 P09s" P05:2. PNC22.. POW2

cDEI0 , Pa 1o.s . .? NANO . .INI

,19"f7 OUP,7C0 T2 EAO

"Ik CO-04AN0090MI 129929OS 2 ANN-4E06

AW.3 02. ICON4 '35011 OSVF!1 WI E522ITV YRS

1uS.A, .0002 1(2 ,A
0 4 . 0V~

1 C
I N5

W E P 0 2

VIE IOE

("0 *rrlls.

Assembler Transiato, P. Pn C& N

00 1E 1140901 4040 3 07 0-00 0000 00 EE 32
D9). 0 31 36 39 SI 2D A~ 05 4 2 3 O flRI Lit3.43
3E E0 34 34 1' 31 It 47 75 42 AD0 323 93 2___________0
442I02; 32 20 so44104W20a0it23 3439

NA ~0 11 21 36 2D 39 IE 33 99 ID It 42 52 94 02 41 AW
4 0~4 So 57 Ar 460 It 07 00 00 02 01 60 It 02 05 as________________________________

04 0 oE I t 2 02 32 Da 04 0 to 2C 3X 22 13

04 02 00 i A 49447 A A , 07 o230 00 0
042 0560 00 00 *40 F' 039 30 02

to06400 Is Do a2 04 I o I O 49640 00 4

0t 40 90 61 49 04 .9 2 40470 2 2 05 6 0 00 02 5 9 0 0

S2 6C IT 4' 49 24 S2 4, 44 20 23 05 Is Is 44 4C 4 IS s9 30 02 02

31020 IN 17 2 02 0O D 0 04 SE 0 00 02 20 44 2 4 3 40 3 ' 4 0 000 2
32 Do 40 S4 56 57 60 46 93 07 A4 00 02 20 22 02 9 2 4 00 2
02 a3 0. 00 111 44 40 43 24 29 02 t2 350 0011 3 Y 0 0 2 07
C02 22 092 00 42 $A At 44 SO1 0 0 00 00 02 02 2 go is a7 to I 5 4. 0

44 04 02 04 2 040 42 V3 4042C 24 2420 02 22Do 9 0 0 W"-

III 00 co 05 00 24 00 AI4 i3 I04 0404 2
0060F040002020at020206ea022n0704 10200

Symbol Key.J

LinltLoaerprogramnong Techniquge

CID I

Executable Program0

Figure 1. Comparison of computer and robot programming levels and techniques.
(Source: IITRI).

-5-N

*r *'*9 % -,N.~ %.

%O

The disadvantage is that interpreted programs run more slowly and are less V.'.,

memory efficient. A compiler, on the other hand, reads the entire program,

translates it, and produces an object code, which is an executable machine .

level program. The advantage to a compiler is that it produces a program that

executes faster and is memory efficient. The disadvantage is that debugging

is a slow process because the entire program must be recompiled each time it

is edited. BASIC is an interpreted language and FORTRAN is a compiled lan-

guage. Those familiar with these languages can appreciate the tradeoffs

between ease of program development and speed of execution. The issue of

interpreted versus compiled languages is very relevant to robotics, because

some languages are interpreted and others are compiled.

The next level up is that of the application programs. These are compu-

ter programs, usually written in a high-level language, that provide a user-

friendly interface for performing some task. Spreadsheets and word proces-

sors, for example, are applications programs. They allow someone unfamiliar •

with computer programming to perform operations on a computer. The actual

computer program being executed is transparent to the user. In much the same

way, there are interactive robot programming packages which run on graphics

systems and computer aided design (CAD) systems. The actual robot program

generated by these packages is transparent to the robot programmer. This

topic is explored in more detail in Section 1.6.4.

The most generic criteria for evaluation of computer languages include

the ease of programmability and the degree to which the language is open to

the environment. 'ore specifically, Pratt (2) discusses the following eight

issues generic to all programming, which will later be shown as relevant to

robot programming:

1. Clarity and simplicity of the language concepts

2. Clarity of syntax

3. Naturalness for the application

4. Support for abstraction

5. Ease of testing/verification/simulation

6. Programming environment features related to the language

7. Portability

8. Cost of development, execution, maintenance

-6-

S F2

.. ,

Every language designer considers these criteria to a greater or lesser

degree. Similarly, a programmer examines the range of available languages

with the same criteria in mind, as each new application arises. Given the

number of criteria here, and the subjectivity of them, it is no wonder that r

there are so many languages and that the effort involved in picking one for a

particular application is formidable. The same is true of robot programming

languages.

If we examine robot programming with these criteria in mind, it becomes ""

apparent that a few of these have been thoroughly addressed, while others have

been virtually ignored. Conventional data processing languages also tend to

selectively address these points, but it must be remembered that those lan-

guages have a substantial history of design, development, and revision.

Relative to robot languages, conventional languages are much more mature and

standards do exist, i.e., FORTRAN 77, COBOL 66, and Ada.

As a final note, it is important to realize that there are two distinct ,

environments in computer programming: the programming environment and the -

operating environment. The programming environment consists of the hardware, .

software, and tools used to develop a program. The operating environment 0

consists of the hardware and software involved in the execution of the pro- P

gram. To clarify the point, consider a commercial spreadsheet. The program- e

ming environment is located at the vendor's site, and consists of the computer el"

and tools used in developing the product. The operating environment, on the

other hand, is at the customer's site, and consists of the computer, operating

system programs, and equipment on which the product is used. The programming

and operating environments are impacted by the implementation of the language.

As noted earlier, an interpreted language is easier to debug (programming

environment) but slower in execution (operating environment) than a compiled

language. In robotics, the programming and operating environments are

extremely important considerations in the language. This issue is explored

further in Sections 3.1 and 3.2. 0

,'% .%

~7.
.z'. Z

